Evolution of mitochondrial gene content: gene loss and transfer to the nucleus.

نویسندگان

  • Keith L Adams
  • Jeffrey D Palmer
چکیده

Mitochondrial gene content is highly variable across extant eukaryotes. The number of mitochondrial protein genes varies from 3 to 67, while tRNA gene content varies from 0 to 27. Moreover, these numbers exclude the many diverse lineages of non-respiring eukaryotes that lack a mitochondrial genome yet still contain a mitochondrion, albeit one often highly derived in ultrastructure and metabolic function, such as the hydrogenosome. Diversity in tRNA gene content primarily reflects differential usage of imported tRNAs of nuclear origin. In the case of protein genes, most of this diversity reflects differential degrees of functional gene transfer to the nucleus, with more minor contributions resulting from gene loss from the cell as a consequence of either substitution via a functional nuclear homolog or the cell's dispensation of the function of the gene product. The tempo and pattern of mitochondrial gene loss is highly episodic, both across the broad sweep of eukaryotes and within such well-studied groups as angiosperms. All animals, some plants, and certain other groups of eukaryotes are mired in profound stases in mitochondrial gene content, whereas other lineages have experienced relatively frequent gene loss. Loss and transfer to the nucleus of ribosomal protein and succinate dehydrogenase genes has been especially frequent, sporadic, and episodic during angiosperm evolution. Potential mechanisms for activation of transferred genes have been inferred, and intermediate stages in the process have been identified by comparative studies. Several hypotheses have been proposed for why mitochondrial genes are transferred to the nucleus, why mitochondria retain genomes, and why functional gene transfer is almost exclusively unidirectional.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitochondrial gene mutation screening in hearing loss patients, Hormozgan, Iran

Introduction: Hearing loss is the most frequent sensory disorder occurs in 1/1000 newborns. About 50% of hearing loss cases are due to genetic causes. Mutation in MTRNR1(A1555G), MTTL1(A3243G) and MTTS1(A7445G) are known to be one of the important cause of nonsyndromic Sensorineural hearing loos in some populations. This study aims to demonstrate the frequency of three mitochondrial mutatio...

متن کامل

Codon optimization and cloning of bovine prochymosin gene for proper expression in tobacco plant

Bovine chymosin enzyme is one of the most commonly used enzymes in the dairy industry. The production of this enzyme from its natural source does not meet the needs of this huge industry. The production of recombinant bovine chymosin in plants can be a good alternative to native enzyme. Insertion and expression of foreign genes in plants can occur in the nucleus and chloroplast organelles. The ...

متن کامل

P-213: Mutation Analysis of Mitochondrial ND4L Gene in Iranian Infertile Men with Varicocele

Background: Varicocele is the abnormal tortuosity and dilatation of the veins of the pampiniform plexus within the spermatic cord. Varicocele-related pathology is suspected in infertility as it leads to elevated temperatures in the scrotum and testes, which has a deleterious effect on spermatogenesis. In Varicocele patients, ROS production is enhanced and total antioxidant capacity (TAC) is red...

متن کامل

Gene Family: Structure, Organization and Evolution

  Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...

متن کامل

Mitochondrial DNA characterization of Sergentomyia sintoni populations and finding mammalian Leishmania infections in this sandfly by using ITS-rDNA gene

Sergentomyia sintoni is the natural vector of Sauroleishmania species of lizards. This sandfly isabundance in and around the burrows of great gerbils. S. sintoni was collected from peridomestic animalshelters, inside and around houses and also from the nearby burrows of the gerbil reservoir hosts,Rhombomys opimus, in several provinces of Iran. Mitochondrial Cytochrome b (Cyt b) of sandflies, wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular phylogenetics and evolution

دوره 29 3  شماره 

صفحات  -

تاریخ انتشار 2003